Oscillatory difference equations and moment problems
نویسندگان
چکیده
منابع مشابه
Oscillatory and Asymptotic Behavior of Fourth order Quasilinear Difference Equations
where ∆ is the forward difference operator defined by ∆xn = xn+1 −xn, α and β are positive constants, {pn} and {qn} are positive real sequences defined for all n ∈ N(n0) = {n0, n0 + 1, ...}, and n0 a nonnegative integer. By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all n ∈ N(n0). If any four consecutive values of {xn} are given, then a solution {xn...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Oscillatory Properties of Fourth Order Nonlinear Difference Equations with Quasidifferences
In this paper we present the oscillation criterion for a class of fourth order nonlinear difference equations with quasidifferences.
متن کاملSome oscillatory properties for a class of partial difference equations
In this paper we study the oscillatory property of solutions for a class of partial difference equation with constant coefficients. In order to study the oscillation results, we find the regions of nonexistence of positive roots of its characteristic equation which is equivalent to the oscillation results. We derive some necessary and sufficient conditions by means of the envelope theory. c ©20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2014
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2014-110